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Abstract
In these notes, we give a self-contained introduction to the Wiener-Itô chaos decom-

position theorem, which is among the most fundamental tools in stochastic analysis. In
its classical form, the theorem asserts that the Hilbert space of square integrable func-
tionals on the Wiener space (the path space W equipped with the law µ of Brownian
motion) admits a decomposition into orthogonal components:

L2(W, µ) =
∞⊕
n=0

Hn,

where each component Hn is generated by the so-called Hermite polynomial functionals
of degree n. In addition, as discovered by K. Itô in his renowned paper [1], Hn coincides
with the space of multiple Wiener integrals of order n.

We adopt an elementary approach to construct the classical Hermite polynomials
by using Gram-Schmidt orthogonalisation. This also yields the decomposition theorem
in the case of the one dimensional Gaussian measure. Our approach to the general
case follows the main line of D. Nualart [4] by extracting the essential structure of the
Wiener space and working in the framework of Gaussian probability spaces.
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1 Motivation
We know from the classical theory of Fourier series that the Hilbert space L2([−π, π], dx) (dx
is the Lebesgue measure) has an orthonormal basis (ONB) given by the functions

{
1√
2π
einx :

n ∈ Z
}
. As a result, every f ∈ L2([−π, π], dx) admits an expansion

f(x) =
∑
n∈Z

cn√
2π
einx (1.1)

which converges in the sense of L2. Another way of looking at this property is to realise
that the function einx is a 2π-periodic eigenfunction of the Laplace operator ∆ = d2

dx2
with

eigenvalue −n2 :
d2

dx2
einx = −n2einx.

As a result, when viewing ∆ as a differential operator

∆ : C2
2π([−π, π]) ⊆ L2([−π, π], dx)→ L2([−π, π], dx)

(C2
2π([−π, π]) is the space of twice continuously differentiable functions with period 2π), the

space L2([−π, π], dx) admits an orthogonal decomposition into eigenspaces of ∆ :

L2([−π, π], dx) =
⊕
n>0

E−n2 , (1.2)

where E−n2 = Span{einx, e−inx} is the eigenspace associated with the eigenvalue −n2. This
is often known as the L2-spectral decomposition theorem for the Laplace operator (on the
circle).

To see where the circle comes from, the main observation is that periodic functions on R
can be equivalently viewed as functions defined on the circle. As a result, the Laplacian is
equivalently viewed as the Laplacian on the circle. The compactness of the circle is critical
to expect the decomposition (1.2), which can further be generalised to the Laplace operator
on any compact Riemannian manifolds. The situation becomes drastically different if we
remove compactness, for instance if we move to the space L2(R1, dx). In this case, there
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are no integrable eigenfunctions of ∆. Moreover, smooth eigenfunctions are parametrised
continuously: eitx is an eigenfunction for each t ∈ R. This also accounts for the replacement
of Fourier series theory by Fourier transform theory in order to expect a proper inversion
theorem.

On the other hand, if we replace the Lebesgue measure dx by the Gaussian measure

γ(dx) =
1√
2π
e−x

2/2,

many nice things will occur. Firstly, we do have an L2-decomposition theorem

L2(R1, γ) =
∞⊕
n=0

Hn, (1.3)

where the Hn’s are one dimensional subspaces generated by the so-called Hermite polynomi-
als. Moreover, (1.3) can indeed be viewed as the spectral decomposition of some differential
operator. To describe this, we take a second look at the Lebesgue measure case. The relation
between ∆ and dx is revealed through the introduction of a Brownian motion: the Laplacian
is the generator of Brownian motion, and dx is the invariant measure of Brownian motion
in the sense that ∫

R
Ptf(x)dx =

∫
R
f(x)dx

for a rich class of test functions f . In a similar way, it is reasonable to expect that in the
decomposition (1.3), theHn’s are the eigenspaces of the generator of a Markov process whose
invariant measure is the Gaussian measure γ. Indeed, such a Markov process is the so-called
Ornstein-Uhlenbeck process defined by the SDE

dXt = −Xt +
√

2dBt,

which can be solved explicitly as Xt =
√

2
∫ t

0
e−(t−s)dBs. The generator of Xt is the differ-

ential operator given by

L =
d2

dx2
− x d

dx
,

and the Gaussian measure γ is the invariant measure of Xt. It turns out that (1.3) is indeed
a decomposition of L2(R1, γ) into orthogonal eigenspaces of L (cf. Section 2.5 below).

Unlike the Lebesgue measure which is sensitive to dimension, an important feature of
the Gaussian measure is that many of its analytic properties (isoperimetric inequalities, con-
centration property, log-Sobolev inequalities etc.) are dimension free and extends naturally
to infinite dimensions (e.g. on the path space equipped with the law of Brownian motion).
In particular, the aforementioned decomposition theorem and the related spectral interpre-
tation have natural extensions to general Gaussian probability spaces. In addition, in the
case of Brownian motion, the homogeneous component Hn has an elegant connection with
multiple Wiener integrals, which was discovered by K. Itô in his renowned paper [1]. This
general decomposition theorem, known as the Wiener-Itô chaos decomposition„ plays a fun-
damental role in modern stochastic analysis. It has several important applications such as in
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the differential calculus on Wiener space and Stein’s method for Gaussian approximations.
We refer the reader to [3, 4] for a discussion on these applications.

The aim of these notes is to give a self-contained introduction to the Wiener-Itô chaos
decomposition theorem and its connection with multiple Wiener integrals. In Section 2,
we construct the Hermite polynomials from the elementary viewpoint of orthogonalisation
and establish the decomposition theorem in R1. In Section 3, we discuss the Cameron-
Martin structure of the Wiener space that is critical for generalising the theorem to the
Brownian motion case. This leads us to the general framework of Gaussian probability spaces.
In Section 4, we establish the decomposition theorem on arbitrary irreducible Gaussian
probability spaces which applies to general continuous Gaussian processes. In Section 5, we
discuss its connection with multiple Wiener integrals.

2 The one dimensional case and Hermite polynomials
As a toy model, we first look at the one dimensional case. Nonetheless, this part contains
most of the essential ideas and structures for the more abstract development.

Let γ be the standard Gaussian measure on R1, namely

γ(dx) =
1√
2π
e−x

2/2dx.

We often use
w(x) ,

1√
2π
e−x

2/2

to denote the Gaussian density. The inner product over L2(R1, γ) is denoted as

〈f, g〉 ,
∫
R1

f(x)g(x)γ(dx),

and the L2-norm is simply denoted as ‖ · ‖. Our aim in this section is to understand the
structure of L2(R1, γ) by decomposing it into certain orthogonal subspaces. Essentially the
same kind of decomposition will be obtained on the Wiener space.

2.1 Construction of an orthonormal basis of L2(R1, γ)

It is an important observation that all polynomials are square integrable with respect to γ,
due to the rapid decay of the kernel w(x). This leads to a natural way of constructing an
orthonormal basis (ONB) of L2(R1, γ). Indeed, we can apply the Gram-Schmidt orthogo-
nalisation procedure to the linearly independent family

{1, x, x2, x3, · · · }

of functions to obtain an orthonormal system{
H̄0(x), H̄1(x), H̄2(x), · · ·

}
,
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both of which generate the space of polynomials. Since polynomials are rich enough to
approximate continuous functions, it is not surprising that this system has to be complete
so that it becomes an ONB.

To be more precise, we recall from linear algebra that the Gram-Schmidt orthogonalisa-
tion procedure starts with H̄0(x) , 1 and inductively we have

H̄n(x) , αn ·
(
xn −

n−1∑
k=0

〈xn, H̄k(x)〉H̄k(x)
)
, n > 1, (2.1)

where αn > 0 is a normalising constant so that ‖H̄n‖ = 1. As a general property of orthog-
onalisation, we know that

Span{H̄0(x), H̄1(x), · · · , H̄n(x)} = Span{1, x, · · · , xn} = Pn (2.2)

for each n > 0, where Pn denotes the space of polynomials of degree n. As a result, we only
need the following lemma to conclude that {H̄0, H̄1, H̄2, · · · } is an ONB of L2(R1, γ).

Lemma 2.1. The space P of polynomials is dense in L2(R1, γ).

Proof. Let f ∈ L2(R1, γ) be an element that is orthogonal to all polynomials. We claim that∫
R1

f(x)eitxγ(dx) = 0 ∀t ∈ R. (2.3)

If this is true, the Fourier transform of the signed measure

ν(A) ,
∫
A

f(x)γ(dx), A ∈ B(R1)

is identically zero, which then implies that ν = 0. As a result, f = 0 γ-a.s.
To show the claim (2.3), we argue in a slightly more general way. Let c ∈ C be fixed.

For each n, define

Sn(x) ,
n∑
k=0

ckxk

k!
.

Then

‖ecx − Sn(x)‖ 6
∞∑

k=n+1

|c|k

k!
· ‖xk‖ =

∞∑
k=n+1

|c|k

k!

√∫
R1

x2kγ(dx).

A use of the 2k-moment formula for the Gaussian measure γ reveals that the order of the
general term in the above series is Ck√

kkk/2
. As a result, we know that

Sn(x)→ ecx in L2(R1, γ)

as n→∞. Since f ⊥ P , we conclude that f ⊥ ecx (for any c ∈ C). In particular, the claim
(2.3) holds.
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Remark 2.1. It is almost never an issue when one extends the consideration to complex-
valued functions, as one can always consider the real and imaginary parts separately. An
alternative argument without using Fourier transform of signed measures is the following.
By using the Stone-Weierstrass theorem, the claim (2.3) implies f ⊥ ϕ for any continuous
periodic function ϕ. This further implies that f ⊥ ψ for any bounded continuous function ψ
(by choosing a periodic function ϕ that equals ψ on an arbitrarily large interval [−M,M ]).
A standard measure-theoretic argument then shows that the latter property is sufficient to
conclude f = 0 γ-a.s.

Theorem 2.1. The family {H̄0, H̄1, H̄2, · · · } is an ONB of L2(R1, γ).

Proof. We already know that the family is orthonormal and generates the space of polyno-
mials. According to Lemma 2.1, we know that the family is also complete.

Remark 2.2. The reason we use the notation H̄n is to save the more common notation Hn

for the standard Hermite polynomials.

2.2 Rodrigues’ formula for H̄n

Our next effort is to figure out the shape of each H̄n. This is essential for deeper considerations
as well as generalisations to the Wiener space / more general Gaussian probability spaces.

In the first place, it is clear from the equation (2.1) that H̄n is a polynomial of degree n
with leading monomial αnxn. In addition, H̄n is orthogonal to Pn−1 since Pn−1 is spanned
by H̄0, · · · , H̄n−1. Before proceeding further, we make two useful observations whose proofs
are straight forward.

Fact 1. For any n > 1, we have

w(x)−1 · d
dx

(
xn−1w(x)

)
= −xn + ψn(x), ψn ∈ Pn−2, (2.4)

where we recall that w(x) , 1√
2π
e−x

2/2 is the Gaussian density and P−1 , {0}.
Fact 2. For any n > 0 and any polynomial q ∈ P , we have∫

R
H̄ ′n(x)q(x)γ(dx) = −

∫
R
H̄n(x) · w(x)−1 d

dx

(
q(x)w(x)

)
γ(dx).

More concisely,
〈H̄ ′n, q〉 = −〈H̄n, w

−1 · (qw)′〉 ∀q ∈ P . (2.5)

This is a direct consequence of integration by parts.

The above simple facts allow us to compute the leading coefficient αn of H̄n easily.

Lemma 2.2. For each n > 1, we have

H̄ ′n =
αn−1

αn
H̄n−1.

By using the above relation recursively, we have αn = 1√
n!
. In particular, H̄ ′n =

√
nH̄n−1.
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Proof. Since H̄ ′n ∈ Pn−1, we can write

H̄ ′n =
n−1∑
k=0

ckH̄k.

By orthogonality, the coefficients ck are given by

ck = 〈H̄ ′n, H̄k〉 = −〈H̄n, w
−1 · (H̄kw)〉, 0 6 k 6 n− 1,

where the second identity follows from (2.5) with q = H̄k. For k 6 n−2, from (2.4) we know
that w−1 · (H̄kw)′ is a polynomial of degree k + 1 6 n− 1. As a result, ck = 0 for such k’s.
For k = n− 1, again from (2.4) we see that cn−1 = αn−1〈H̄n, x

n〉. On the other hand, if we
take the inner product with H̄n on both sides of (2.1), we have αn〈H̄n, x

n〉 = 1. Therefore,
cn−1 = αn−1

αn
. The first assertion thus follows.

For the second assertion, by further differentiation and using the first part recursively,
we have

H̄(n)
n =

αn−1

αn
· αn−2

αn−1

· αn−3

αn−2

· · · · · α0

α1

H̄0 =
1

αn
(H̄0 = 1).

Since the leading term of H̄n is αnxn, we also know that H̄(n)
n = n!αn. Therefore,

1

αn
= n!αn =⇒ αn =

1√
n!
.

The final assertion of the lemma requires no comment.

In order to derive an explicit formula for the function H̄n, we need to look deeper into
the relation between H̄n−1 and H̄n. From (2.4) we know that w−1 · (H̄n−1w)′ ∈ Pn, and thus
we can write

w−1 · (H̄n−1w)′ =
n∑
k=0

ckH̄k,

where
ck = 〈w−1 · (H̄n−1w)′, H̄k〉 = −〈H̄ ′k, H̄n−1〉, 0 6 k 6 n.

It is clear that ck = 0 when k 6 n− 1. In addition, from Lemma 2.2 we have

cn = −〈H̄n, H̄n−1〉 = −
√
n〈H̄n−1, H̄n−1〉 = −

√
n.

Consequently,
w−1 · (wH̄n−1)′ = −

√
nH̄n. (2.6)

This relation leads us to the following so-called Rodrigues’ formula for H̄n.

Theorem 2.2. For each n > 0, we have

H̄n(x) =
(−1)n√
n!
· ex2/2 · d

n

dxn
(
e−x

2/2
)
.
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Proof. By using the relation (2.6) recursively, we have

H̄n(x) = − 1√
n
· w(x)−1 · d

dx

(
w(x)H̄n−1

)
= − 1√

n
· ex2/2 · d

dx

(
e−x

2/2H̄n−1

)
= − 1√

n
· ex2/2 · d

dx

(
e−x

2/2 ·
(
− 1√

n− 1
ex

2/2 d

dx

(
e−x

2/2H̄n−2

)))
=

(−1)2√
n(n− 1)

ex
2/2 · d

2

dx2

(
e−x

2/2H̄n−2

)
=

(−1)2√
n(n− 1)

ex
2/2 · d

2

dx2

(
e−x

2/2
(
− 1√

n− 2
ex

2/2 d

dx

(
e−x

2/2H̄n−3

)))
=

(−1)3√
n(n− 1)(n− 2)

ex
2/2 d

3

dx3

(
e−x

2/2H̄n−3

)
= · · · = (−1)n√

n!
ex

2/2 d
n

dxn
(
e−x

2/2
)
.

This gives the desired formula.

2.3 The generating function and basic properties of H̄n

Rodrigues’ formula implicitly suggests that the H̄n’s may arise as the coefficients of the
Taylor expansion of certain function (a generating function). To elaborate this idea, let us
define

F (x, t) , ext−t
2/2, (x, t) ∈ R2.

By writing
F (x, t) = ex

2/2−(x−t)2/2

and using Rodrigues’ formula, we see that

∂nF (x, t)

∂tn

∣∣∣∣
t=0

= (−1)nex
2/2 d

n

dxn
(
e−x

2/2
)

=
√
n!H̄n(x).

A standard application of Taylor’s expansion gives the following useful fact.

Proposition 2.1. F (x, t) is the generating function of the H̄n’s in the sense that

F (x, t) =
∞∑
n=0

H̄n(x)√
n!

tn. (2.7)

In other words, H̄n(x)/
√
n! is the n-th coefficient in the Taylor expansion of F (x, t) with

respect to t.

Using the viewpoint of generating function, we can easily summarise the essential prop-
erties of H̄n.

Proposition 2.2. The functions {H̄n : n > 0} satisfy the following three relations:

(i) H̄n(−x) = (−1)nH̄n(x), namely H̄n is an odd function if n is odd and it is an even
function if n is even;
(ii) H̄ ′n =

√
nH̄n−1;

(iii)
√
nH̄n(x) = xH̄n−1(x)−

√
n− 1H̄n−2(x).
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Proof. (i) This follows from the observation that

F (−x, t) = F (x,−t)

and the expansion 2.7.

(ii) This is a restatement of Lemma 2.2 but let us derive it by using the generating function.
Observe that F (x, t) satisfies the following PDE:

∂F (x, t)

∂x
= tF (x, t).

As a result, we have
∞∑
n=0

tn√
n!
H̄n(x)′ =

∞∑
n=0

tn+1

√
n!
H̄n(x).

The relation follows by comparing the coefficients of tn on both sides.

(iii) This relation can be obtained in a similar way as in (ii) by observing that F (x, t) satisfies
another PDE:

∂F (x, t)

∂t
= (x− t)F (x, t).

2.4 Hermite polynomials

In probability theory, we often work with the normalisation

Hn(x) ,
H̄n(x)√

n!
, n > 0.

Definition 2.1. The polynomial Hn is called the n-th Hermite polynomial over R1.

We summarise the essential properties of Hn in the following result. They are direct
translations of what we have obtained previously.

(i) Rodrigues’ formula:

Hn(x) =
(−1)n

n!
ex

2/2 d
n

dxn
(
e−x

2/2
)
;

(ii) Parity :
Hn(−x) = (−1)nHn(x);

(iii) 1st recursive relation:
H ′n = Hn−1; (2.8)

(iv) 2nd recursive relation:

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x). (2.9)

Remark 2.3. The first few Hermite polynomials are given by

H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1

2
, H3(x) =

x3 − 3x

6
etc.
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The following generalised orthogonality property is useful when extending the discussion
to general Gaussian probability spaces.

Lemma 2.3. Let (X, Y ) be a jointly Gaussian random vector such that

E[X] = E[Y ] = 0, V [X] = V [Y ] = 1.

Then

E[Hm(X)Hn(Y )] =

{
1
n!
E[XY ]n, m = n,

0, otherwise.

Proof. The joint moment generating function of (X, Y ) is given by

E[esX+tY ] = e
1
2

(s2+t2+2stE[XY ]).

Equivalently, we have

estE[XY ] = E
[
esX−

1
2
s2 · etY−

1
2
t2
]

= E[F (X, s)F (Y, t)]

= E
[( ∞∑

m=0

Hm(X)sm
)
·
( ∞∑
n=0

Hn(Y )tn
)]

=
∞∑

m,n=0

E[Hm(X)Hn(Y )]smtn.

The result follows by expanding the left hand side into an (s, t)-series and comparing the
coefficients of smtn on both sides.

Theorem 2.1 can be restated in the following form. Its extension to general Gaussian
probability spaces (including Brownian motion as a basic example) is the goal of later sec-
tions.

Theorem 2.3. The Hilbert space L2(R1, γ) admits the following decomposition:

L2(R1, γ) =
∞⊕
n=0

Hn, (2.10)

where Hn , Span{Hn(x)} and Hm ⊥ Hn for all m 6= n.

2.5 The spectral perspective

Let us examine Theorem (2.3) from the viewpoint of spectral decomposition. We want to
identify a differential operator L such that the Hn’s in the decomposition (2.10) are the
eigenspaces of L. As mentioned in the introduction, an essential point is that the Gaussian
measure γ should be the invariant measure of a Markov process Xt whose generator is L, in
the sense that ∫

R
Ptf(x)γ(dx) =

∫
R
f(x)γ(dx) ∀f (2.11)
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where Pt is the transition semigroup of Xt generated by L. In particular,∫
R
Lf(x)γ(dx) = 0 ∀f.

To derive the shape of L, A natural idea is to look for L as a perturbation of the Laplacian
by a first order differential operator. Namely,

L =
d2

dx2
+ b(x)

d

dx
,

with some function b(x) to be determined. By the definition of the generator, we have∫
R
Lf(x)γ(dx) =

∫
R

(
f ′′(x) + b(x)f ′(x)

)
γ(dx) ∀f.

Assuming all functions have at most polynomial growth at infinity, a simple integration by
parts shows that ∫

R
(x+ b(x))f ′(x)γ(dx) = 0 ∀f.

As a result, we have b(x) = −x and thus

L =
d2

dx2
− x d

dx
.

From the perspective of stochastic calculus, the associated Markov process with generator
L is given by the SDE:

dXt = −Xtdt+
√

2dBt, X0 ∼ N(0, 1). (2.12)

By solving it explicitly, one finds that

Xt = e−tX0 +
√

2

∫ t

0

e−(t−s)dBs.

In particular, Xt is a stationary Gaussian process and it is known as the Ornstein-Uhlenbeck
process. Explicit calculation shows that the invariant measure of Xt is the Gaussian measure
γ in the sense of (2.11).

On the other hand, from the recursive relations (2.8) and (2.9), it is plain to check that

H ′′n(x)− xH ′n(x) = −nHn(x).

In particular, Hn is the eigenspace of L associated with the eigenvalue −n (n > 0). Moreover,
when viewed as an unbounded linear operator

L : C2
b (R1) ⊆ L2(R1, γ)→ L2(R1, γ),

it can be shown that {−n : n > 0} are the only possible eigenvalues of L. As a conse-
quence, Theorem 2.3 provides an L2-spectral decomposition of the differential operator L
into orthogonal eigenspaces.
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3 Gaussian probability spaces
As we have mentioned, an important feature of Gaussian measures is that many of their
properties are dimension free and extends to infinite dimensions naturally. The most canon-
ical example is the Wiener measure (the law of Brownian motion) on the so-called Wiener
space. Our next goal is to generalise Theorem 2.1 to the Wiener space. However, there
are several specific structures on the Wiener space that are irrelevant to the development.
Restricting ourselves to the special setting of Brownian motion will conceal the essence of
the theorem. Therefore, we first spend some time extracting the essential structure of the
Wiener space on which the theorem is based.

3.1 The Wiener space and its Cameron-Martin subspace

Let W be the space of continuous functions w : [0, 1] → R1 with w0 = 0. W is a Banach
space under the supremum norm. We equipW with the Borel σ-algebra B(X) (the σ-algebra
generated by open subsets of W). Let µ be probability measure on B(X) defined by the law
of Brownian motion over [0, 1]. The probability space (W ,B(W), µ) is known as the Wiener
space over [0, 1], and the probability measure µ is called the Wiener measure.

The classical Wiener-Itô decomposition theorem asserts that the Hilbert space L2(W , µ)
admits the following orthogonal decomposition

L2(W , µ) =
∞⊕
n=0

Hn, (3.1)

where each Hn is a closed subspace generated by certain Hermite polynomial functionals on
W of degree n. The essential ingredient governing this decomposition is an intrinsic Hilbert
structure embedded the Wiener space W , known as the Cameron-Martin subspace, which
we now describe.

Observe that the canonical process

Wt(w) , wt, w ∈ W

is a standard Brownian motion over [0, 1] under µ. We defineH1 be the closure (in L2(W , µ))
of the linear subspace spanned by {Wt : 0 6 t 6 1}. Since Gaussian distributions are closed
weak convergence, it is clear that all elements in H1 are Gaussian random variables on
(W ,B(W), µ). The subspace H1 will be the n = 1 component in the decomposition (3.1).
Given an element Z ∈ H1, we can construct an associated path by

ht , Eµ[ZWt], 0 6 t 6 1. (3.2)

It is easy to see that h ∈ W . Let H be the space of paths h ∈ W that arise in this way.

Definition 3.1. We define an inner product structure on H by

〈h1, h2〉H , Eµ[Z1Z2],

where hi is associated with Zi (i = 1, 2). The Hilbert space (H, 〈h1, h2〉H) is known as the
Cameron-Martin subspace of the Wiener space W .
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Remark 3.1. There are two technical points to check: the inner product is well defined, and
H is indeed a Hilbert space under this inner product. It can also be seen that H is separable.
We leave these tedious details as an exercise.

From the definition of H, we know that (H, 〈·, ·〉H) and (H1, 〈·, ·〉L2(W,µ)) are isometrically
isomorphic. The following result describes the explicit shape of H. We use ḣ to denote the
time derivative of a function h : [0, 1]→ R1.

Theorem 3.1. The Cameron-Martin subspace is equivalently given by

H = {h ∈ W : h is absolutely continuous and ḣ ∈ L2([0, 1], dt)}, (3.3)

where the inner product structure is

〈h1, h2〉H =

∫ 1

0

ḣ1(t)ḣ2(t)dt. (3.4)

Proof. Let H̃ be the Hilbert space defined by the right hand side of (3.3) whose inner product
〈·, ·〉H̃ is defined by the right hand side of (3.4). To put the definition in another way, every
element h ∈ H̃ is given by

ht =

∫ t

0

ϕsds, 0 6 t 6 1, (3.5)

where ϕ ∈ L2([0, 1], dt). Correspondingly, the inner product 〈·, ·〉H̃ is induced from the one
on L2([0, 1], dt). We wish to show that

H = H̃, 〈·, ·〉H = 〈·, ·〉H̃ .

The main idea is to verify this on a suitable dense subspace.
Let H ′ be the subspace of H consisting of those h’s defined by (3.2) with

Z ∈ H′1 , Span{Wu : 0 6 u 6 1} ⊆ H1.

It is clear that H is the closure of H ′. In parallel, let H̃ ′ be the subspace of H ′ consisting of
those h’s defined by (3.5) with

ϕ ∈ E , Span{1[0,u] : u ∈ [0, 1]} ⊆ L2([0, 1], dt).

We also observe that H̃ is the closure of H̃ ′. As a result, it is sufficient to show that H ′ = H̃ ′

and the two inner products are identical on H ′. But this is immediate since the two spaces
H′1 and E are in one-to-one correspondence through

Wu ←→ 1[0,u], u ∈ [0, 1].

The random variable Z , Wu gives rise to

ht = E[ZWt] = t ∧ u, 0 6 t 6 1,

while the L2-function ϕ , 1[0,u] gives rise to the same path

ht =

∫ t

0

1[0,u](s)ds = t ∧ u, 0 6 t 6 1.

13



The two inner products are identical since

E[W 2
u ] = u = ‖1[0,u]‖2

L2([0,1],dt).

Remark 3.2. Many authors directly define the Cameron-Martin subspace by (3.3). We take
a different viewpoint which is more robust and applies to arbitrary continuous Gaussian
processes.

Remark 3.3. The Cameron-Martin subspace plays a fundamental role in the analysis of
Brownian motion and Wiener functionals such as solutions to SDEs. Its significance lies
in the renowned Cameron-Martin transformation theorem, which asserts that the Wiener
measure is quasi-invariance along directions in H (namely, the measure µh induced by the
translation w 7→ w + h along any given direction h ∈ H is absolutely continuous with
respect to µ), while it is singular along directions in Hc (namely, µh and µ are singular to
each other for any h ∈ Hc). This transformation theorem suggests that a proper notion
of differential calculus on the Wiener space needs to respect the Cameron-Martin structure
H (i.e. only differentiation along H-directions is meaningful under the Wiener measure µ).
The development of such a theory as well as its applications is one of the main themes in
stochastic analysis (the Malliavin calculus).

A natural question is, given an absolutely continuous path h : [0, 1] → R1 with ḣ ∈
L2([0, 1], dt), what is the corresponding Z ∈ H1 that satisfies (3.2)? To answer this question,
we first introduce the notion of Wiener integrals. For any indicator function ϕ = 1[u,v] ∈
L2([0, 1], dt), we set

I(ϕ) ,
∫ 1

0

ϕtdWt , Wv −Wu.

By linear extension, this defines a mapping I from the subspace of step functions (linear
combinations of the 1[u,v]’s) into L2(W , µ). This mapping is an isometry in the sense that

〈I(ϕ), I(ψ)〉L2(W,µ) = 〈ϕ, ψ〉L2([0,1],dt) ∀ step functions ϕ, ψ, (3.6)

which can be checked by plain calculation. As a result, I extends to an isometric embedding

I : L2([0, 1], dt)→ L2(W , µ).

From the definition of H1, we further see that the image of I is precisely H1. In other words,
I defines an isometric isomorphism between L2([0, 1], dt) and H1. As a result,

I(ϕ) ∼ N(0, ‖ϕ‖2
L2([0,1],dt)) ∀ϕ ∈ L2([0, 1], dt).

In fact, more than this is true: the family

{I(ϕ) : ϕ ∈ L2([0, 1], dt)}

is a Gaussian system with mean zero and covariance structure given by (3.6).
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Definition 3.2. For any ϕ ∈ L2([0, 1], dt), the random variable I(ϕ) on (W ,B(W), µ) is
known as the Wiener integral of ϕ. Symbolically we write

I(ϕ) =

∫ 1

0

ϕtdWt or more canonically I(ϕ)(w) =

∫ 1

0

ϕtdwt, w ∈ W .

Remark 3.4. Wiener integrals are special cases of Itô’s stochastic integrals in stochastic
calculus.

Using the notion of Wiener integrals, a direct corollary of Theorem 3.1 is the following.

Proposition 3.1. For any h ∈ H, the corresponding Gaussian random variable Z ∈ H1 in
the relation (3.2) is given by Z = I(ḣ).

Proof. Essentially we need to check that

ht = E[I(ḣ)Wt] ∀h ∈ H and t ∈ [0, 1].

Given fixed t, the Cameron-Martin path ht· ∈ H associated with Z , Wt is

hts = s ∧ t, 0 6 s 6 1.

In addition, the Wiener integral of ḣt is exactly Wt. According to isometry property (3.6),
for any h ∈ H we have

E[I(ḣ)Wt] = E[I(ḣ)I(ḣt)] = 〈ḣ, ḣt〉L2([0,1],dt) = 〈ḣ,1[0,t]〉L2([0,1],dt) = ht.

The desired relation then follows.

The relations among the three isometrically isomorphic Hilbert spaces

L2([0, 1], dt), H, H1

are summarised in the following diagram.
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The essential structure from the Wiener space

By abuse of notation, we write

W : H → H1, W (h) , I(ḣ) =

∫ 1

0

ḣtdWt

to denote the mapping at the bottom line of the previous diagram.
To summarise the essential structure obtained so far, we have a mean zero Gaussian

family
{W (h) : h ∈ H}

indexed by a separable Hilbert space H, whose covariance structure is given by

E[W (h1)W (h2)] = 〈h1, h2〉H .
As we will see, this is the only structure needed for establishing the aforementioned decom-
position theorem (3.1).

3.2 Irreducible Gaussian probability spaces

Having the previous essential structure in mind, we now introduce the following definition
(cf. Malliavin [2]). Let H be a separable Hilbert space that is given and fixed.

Definition 3.3. An irreducible Gaussian probability space is a probability space (Ω,F ,P)
on which is defined a Gaussian family {W (h) : h ∈ H} such that

(i) F = σ(W (h) : h ∈ H);
(ii) For any h1, h2 ∈ H, we have

E[W (h1)W (h2)] = 〈h1, h2〉H . (3.7)

The family {W (h) : h ∈ H} is called an isonormal Gaussian family with respect to H.

The Wiener space is a special example of an irreducible Gaussian probability space. More
generally, given any Gaussian process {Xt : 0 6 t 6 1} with continuous sample paths, there
is an associated irreducible Gaussian space in which the underlying Hilbert space is the
corresponding Cameron-Martin subspace. The construction, in particular of this Cameron-
Martin subspace (cf. 3.1), follows the same line as in the Brownian motion case.

The following property is parallel to the case of the Wiener space. Let (Ω,F ,P; {W (h) :
h ∈ H}) be an irreducible Gaussian probability space.

Lemma 3.1. The mapping

W : H → L2(Ω,F ,P), h 7→ W (h) (3.8)

is an linear isometric embedding.

Proof. The only thing that needs to be checked is linearity:

W (ch1 + h2) = cW (h1) +W (h2), ∀h1, h2 ∈ H and c ∈ R. (3.9)

To this end, by using the relation (3.7) we easily find

E[(W (ch1 + h2)− cW (h1)−W (h2))2] = 0.

Therefore, the equation (3.9) holds in L2(Ω,F ,P).
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4 The Wiener-Itô decomposition theorem on irreducible
Gaussian probability spaces

Let (Ω,F ,P; {W (h) : h ∈ H}) be a given fixed irreducible Gaussian probability space. Recall
that Hn (n > 0) is the n-th Hermite polynomial over R1. We define H0 , R, and for each
n > 1 we define Hn to be the L2-closure of the subspace

Span{Hn(W (h)) : h ∈ H, ‖h‖H = 1}. (4.1)

Note that H1 = {W (h) : h ∈ H}. For n > 2, the condition ‖h‖H = 1 in (4.1) is needed.

Definition 4.1. The closed subspace Hn is called the n-th Wiener chaos over the given
Gaussian probability space. Elements in Hn are often called homogeneous Wiener polyno-
mials of degree n.

The main result of this section is the following decomposition theorem which generalises
the one dimensional case in Section 2.

Theorem 4.1 (TheWiener-Itô chaos decomposition theorem). The space L2(Ω,F ,P) admits
the following decomposition:

L2(Ω,F ,P) =
∞⊕
n=0

Hn,

where the Wiener chaoses Hn are orthogonal to each other: Hm ⊥ Hn for any m 6= n.

Proof. The orthogonality of the Hn’s is a direct consequence of Lemma 2.3. To establish the
decomposition, it remains to show that:

F ∈ L2(Ω,F ,P), F ⊥ Hn ∀n =⇒ F = 0.

Let F be such an element. Since F is generated by the family {W (h) : h ∈ H}, to show
F = 0 it is enough to show that the signed measure

ν(Γ) = E[F1{(W (h1),··· ,W (hr))∈Γ}], Γ ∈ B(Rr)

is zero for any given r and h1, · · · , hr ∈ H. To this end, note that the Fourier transform of
ν is given by

ν̂(t1, · · · , tr) =

∫
Rr
ei(t1x1+···trxr)dν = E[Fei(t1W (h1)+···+trW (hr))]

= E[FeiW (h)] (h , t1h1 + · · ·+ trhr)

=
∞∑
n=0

in‖h‖nH
n!

E[FW (h̄)n] (h̄ , h/‖h‖H).

Since W (h̄)n ∈ Span{1, H1(W (h̄)), · · · , Hn(W (h̄))} (cf. (2.2)), by the assumption on F we
conclude that ν̂ = 0, and thus ν = 0. Since r and h1, · · · , hr are arbitrary, it follows that
F = 0.
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Similar to the case of R1, it can be show that the sum of the first n Wiener chaoses
gives the space of “polynomial functionals” of degree n. To make this precise, let P0

n be
the linear subspace spanned by elements of the form p(W (h1), · · · ,W (hr)), where r > 1,
h1, · · · , hr ∈ H and p is a polynomial in r variables whose degree is at most n. Let Pn be
the L2-closure of P0

n and also define Cn , ⊕nk=0Hk.

Proposition 4.1. For each n > 0 we have Cn = Pn.

Proof. It is clear that Cn ⊆ Pn, since

Hk(W (h)) ∈ Span(1,W (h), · · · ,W (h)k) ⊆ P0
n, ∀ k 6 n.

For the other direction, according to Theorem 4.1, it is enough to show that P0
n is perpen-

dicular to all those Hm’s with m > n. More specifically, let p(W (h1), · · · ,W (hr)) ∈ P0
n and

h ∈ H with ‖h‖H = 1. We wish to see that

p(W (h1), · · · ,W (hr)) ⊥ Hm(W (h)) (4.2)

where m > n. To this end, let {h, e1, · · · , es} be the orthonormal system obtained from the
family {h, h1, · · · , hr} by applying the Gram-Schmidt orthogonalisation procedure. By the
linearity of W , we can write

p(W (h1), · · · ,W (hr)) = q(W (h),W (e1), · · · ,W (es)).

where q is a polynomial of degree at most n. Each monomial on the right hand side has the
form

W (h)aW (e1)a1 · · ·W (es)
as , a 6 n.

Since {W (h),W (e1), · · · ,W (es)} are independent and W (h)a ⊥ Hm(W (h)) (a 6 n < m),
we see that

E[W (h)aW (e1)a1 · · ·W (es)
asHm(W (h))]

= E[W (h)aHm(W (h))] · E[W (e1)a1 ] · · ·E[W (es)
as ] = 0.

The property (4.2) thus follows.

Our next task is to identify an ONB for each Hn (and thus for L2(Ω,F ,P)). Let us begin
by fixing an ONB {e1, e2, · · · } of H which exists due to separability. We define Λ to be the
set of all sequences a = (a1, a2, · · · ) in which ai ∈ N and there are at most finitely many
non-zero components. For each a = (a1, a2, · · · ) ∈ Λ, we set

|a| ,
∞∑
i=1

ai, a! ,
∞∏
i=1

ai!,

and define

Φa ,
√
a!
∞∏
i=1

Hai(W (ei)).

We also set
Λn , {a ∈ Λ : |a| = n}.

18



Theorem 4.2. For each n > 1, {Φa : a ∈ Λn} is an ONB of Hn. As a consequence,
{Φa : a ∈ Λ} is an ONB of L2(Ω,F ,P).

To prove the theorem, we need the following technical lemma.

Lemma 4.1. Suppose that hin → hi in H as n → ∞ (1 6 i 6 r). Let p be a polynomial in
r variables. Then for any α > 1, we have

p(W (h1
n), · · · ,W (hrn))→ p(W (h1), · · · ,W (hr)) in Lα(Ω,F ,P)

as n→∞.

Proof. We can express

p(W (h1
n), · · · ,W (hrn))− p(W (h1), · · · ,W (hr))

=
r∑
j=1

( ∫ 1

0

∂xjp
(
(1− t)ξn + tξ

)
dt
)
·W (hjn − hj),

where
ξn , (W (h1

n), · · · ,W (hrn)), ξ , (W (h1), · · · ,W (hr)).

Since {hin : n > 1} are bounded in H, it is not hard to see that∥∥∫ 1

0

∂xjp
(
(1− t)ξn + tξ

)
dt
∥∥
L2α 6 C ∀n > 1 and 1 6 j 6 r,

where C is a constant depending on the polynomial p and supn,j ‖hjn‖H . By using Hölder’s
inequality, we have

‖p(W (h1
n), · · · ,W (hrn))− p(W (h1), · · · ,W (hr))‖Lα

6
r∑
j=1

∥∥∫ 1

0

∂xjp
(
(1− t)ξn + tξ

)
dt
∥∥
L2α · ‖W (hjn − hj)‖L2α

6 C ′ · sup
16j6r

‖W (hjn − hj)‖L2α 6 C ′′ sup
16j6r

‖hjn − hj‖H ,

which converges to zero as n→∞ by the assumption.

Proof of Theorem 4.2. According to Lemma 2.3, we have

E[ΦaΦb] =
√
a!b!

∞∏
i=1

E[Hai(W (ei))Hbi(W (ei))] =

{
1, if a = b,

0, if a 6= b.

This shows that the system {Φa : a ∈ Λ} is orthonormal. In addition, if we define Ln to be
the L2-closure of Span{Φa : a ∈ Λn}, then Lm ⊥ Ln whenever m 6= n. It remains to show
that Ln = Hn.

For this purpose, we first show that

Pn = L(n) ,
n⊕
k=0

Lk. (L0 , R)
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The fact that L(n) ⊆ Pn is obvious. For the other direction, let p(W (h1), · · · ,W (hr)) ∈ P0
n.

For each 1 6 j 6 r, we can find
hjn → hj in H

where hjn is a linear combination of the basis elements e1, e2, · · · . According to Lemma 4.1,
we know that

p(W (h1
n), · · · ,W (hrn))→ p(W (h1), · · · ,W (hr)) in L2(Ω,F ,P).

On other other hand, since
hjn ∈ Span{e1, e2, · · · },

we see that p(W (h1
n), · · · ,W (hrn)) is a linear combination of monomials of the form

W (ei1)
a1 · · ·W (eis)

as

where a1 + · · ·+ as 6 n. Since

W (eil)
al ∈ Span{1, H1(W (eil)), · · · , Hal(W (eil))},

we see that W (ei1)
a1 · · ·W (eis)

as ∈ L(n). Consequently, Pn ⊆ L(n).
Combining with Proposition 4.1, we have shown that L(n) = Pn = Cn. To prove Ln = Hn,

let X ∈ Ln. Since X ∈ Cn, we can write

X = Y + Z, Y ∈ Cn−1, Z ∈ Hn.

By taking inner product with Y, we have

〈X, Y 〉L2 = 〈Y, Y 〉L2 + 〈Z, Y 〉L2 = 〈Y, Y 〉L2 .

On the other hand, since Y ∈ Cn−1 = L(n−1) and X ∈ Ln, we know that 〈X, Y 〉L2 = 0. It
follows that 〈Y, Y 〉L2 = 0 (i.e. Y = 0) and thus X = Z ∈ Hn. This shows Ln ⊆ Hn. The
other direction is obtained in a similar way. Therefore, we conclude that Ln = Hn, which
also completes the proof.

Example 4.1. Consider Ω = Rd equipped with the standard d-dimensional Gaussian mea-
sure P on the Borel σ-algebra F = B(Rd). In this case, we have H = Rd and the isonormal
Gaussian family is defined by

W (h) : Rd → R, W (h)(x) = 〈h, x〉Rd

for each h ∈ H. Let {e1, · · · , ed} be the canonical ONB of H. The family{ 1√
a1! · · · · · ad!

Ha1(W (e1)) · · ·Had(W (ed)) : a1 + · · ·+ ad = n
}

is an ONB of Hn.

Remark 4.1. The spectral interpretation of the Wiener-Itô decomposition is still valid in the
infinite dimensional case. If we consider the Wiener space (W ,B(W), µ), the decomposition
(3.1) is precisely the spectral decomposition for the generator L of a W-valued Markov
process (the Ornstein-Uhlenbeck process) whose invariant measure is µ. For each n > 0, the
space Hn is the eigenspace of L associated with the eigenvalue −n. We refer the reader to
[5] for a deeper discussion along this line.
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5 Multiple Wiener integrals and their connection with
Wiener chaoses

In the case of the Wiener space, the n-th Wiener chaos has an elegant connection with
multiple Wiener integrals. Recall that the Cameron-Martin subspace H is isometrically
isomorphic to L2([0, 1], dt) and hence can be identified with the latter. This L2-nature of H
is the key structure that supports the connection with multiple Wiener integrals.

To filter out other irrelevant structures, we consider a general irreducible Gaussian prob-
ability space (Ω,F ,P; {W (h) : h ∈ H}) where the Hilbert space H is given by an L2-space.
We need the following definition to make precise our assumption on H.

Definition 5.1. Let (T,B, µ) be a measure space. A subset B ∈ F is called an atom of µ
if µ(B) > 0 and

A ∈ B, A ⊆ B =⇒ µ(A) = 0 or µ(A) = µ(B).

A measure space (T,B, µ) is said to be atomless if there are no atoms of µ.

From now on, unless otherwise stated we always assume that H = L2(T,B, µ), where
(T,B, µ) is a σ-finite atomless measure space and H is separable. The atomless assumption
plays a critical role in this part (cf. Section 5.1.4 below). In the case of the Wiener space,
we have T = [0, 1], B = B([0, 1]) and µ = dt. The situation of σ-finite measures is relevant
when we consider T = [0,∞). It can be shown that the Lebesgue measure is atomless.

5.1 Construction of multiple Wiener integrals

We first construct the multiple Wiener integrals. More specifically, for each n > 1 we wish
to define ∫

Tn
f(t1, · · · , tn)dWt1 · · · dWtn (5.1)

where f ∈ L2(T n,Bn, µn) and (T n,Bn, µn) is the n-th product space of (T,B, µ). The un-
derlying idea of the construction is similar to the case of the Wiener integral: we first write
down a natural definition of (5.1) for a class of “elementary” functions f, and then rely on a
suitable isometry property to pass to the limit. Here a crucial effort is to identify what this
class of “elementary” functions should be.

We begin with some basic definitions. A function f(t1, · · · , tn) is said to be symmetric if

f(tσ(1), · · · , tσ(n)) = f(t1, · · · , tn) ∀σ ∈ Sn,

where Sn denotes the set of permutations of order n. Given an arbitrary function f(t1, · · · , tn),
its symmetrisation is defined by

f̃(t1, · · · , tn) ,
1

n!

∑
σ∈Sn

f(tσ(1), · · · , tσ(n)). (5.2)

It is clear that f̃ is symmetric, and a function f is symmetric if and only if f = f̃ . We
use L2

S(T n,Bn, µn) to denote the subspace of symmetric functions in L2(T n,Bn, µn). Math-
ematically, L2

S(T n,Bn, µn) is the image of the symmetrisation operator defined by (5.2) on
L2(T n,Bn, µn).
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Next, we set
B0 , {A ∈ B : µ(A) <∞}.

For each A ∈ B0, we write W (A) , W (1A) (note that 1A ∈ H). It is obvious that W (A) ∼
N(0, µ(A)). Given n > 1, we define En to be the class of functions f ∈ L2(T n,Bn, µn) having
the form

f(t1, · · · , tn) =
m∑

i1,··· ,in=1

ai1,··· ,in1Ai1×···×Ain , (5.3)

where {A1, · · · , Am} is any given collection of disjoint subsets in B0, and the coefficient
ai1,··· ,in = 0 if there are repeated indices in (i1, · · · , in). For each f ∈ En given by the form
(5.3), we define its multiple Wiener integral to be

In(f) ,
m∑

i1,··· ,in=1

ai1,··· ,inW (Ai1) · · · · ·W (Ain). (5.4)

The following result summarises the construction of the multiple Wiener integral and its
essential properties.

Theorem 5.1 (Multiple Wiener integrals). For each n > 1, the mapping In : En →
L2(Ω,F ,P) is well defined and extends to a unique bounded linear operator

In : L2(T n,Bn, µ)→ L2(Ω,F ,P).

In addition, the following properties hold true:

(i) For any f ∈ L2(T n,Bn, µn), we have

In(f) = In(f̃),

where f̃ is the symmetrisation of f defined by (5.2).
(ii) For any f ∈ L2(T p,Bp, µp) and g ∈ L2(T q,Bq, µq), we have

E[Ip(f)Iq(g)] =

{
p!〈f̃ , g̃〉L2 , p = q,

0, otherwise.
(5.5)

In particular, if we introduce an inner product on L2
S(T n,Bn, µn) by

〈f, g〉L2
S
, n!〈f, g〉L2 , f, g ∈ L2

S(T n,Bn, µn),

then under this inner product In is an isometric embedding from L2
S(T n,Bn, µn) into L2(Ω,F ,P).

Remark 5.1. Symbolically we also use∫
Tn
f(t1, · · · , tn)dWt1 · · · dWtn

to denote the multiple Wiener integral In(f). Note that I1 is just the mapping W defined
by (3.8) (the Wiener integral in the case of the Wiener space).
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The essential point in the proof of this theorem is to establish the isometry property (5.5)
for In on the space En. It is then a consequence of the denseness of En that In admits a unique
extension to L2(T n,Bn, µn) that preserves the same property. The rest of this subsection is
devoted to the proof of Theorem 5.1. Some of the steps are quite technical and less inspiring.
Nonetheless, it is important to see how the off-diagonal assumption in the definition En (i.e.
ai1,··· ,in = 0 if (i1, · · · , in) has repeated indices) plays a basic role when deriving the isometry
property (5.5), while the subspace En is still rich enough to generate L2(T n,Bn, µn). The
proof of the theorem can be skipped if the reader is convinced by these points.

We break down the proof in the several major steps.

5.1.1 Step one: the mapping In : En → L2(Ω,F ,P) is well defined

Lemma 5.1. The definition of In(f) given by (5.4) does not depend on the particular rep-
resentation of f . In particular, In : En → L2(Ω,F ,P) is a well defined linear operator.

Proof. Suppose that f admits two representations:

f =
k∑

i1,··· ,in=1

ai1,··· ,in1Ai1×···×Ain =
l∑

j1,··· ,jn=1

bj1,··· ,jn1Bj1×···×Bjn , (5.6)

where {A1, · · · , Ak} and {B1, · · · , Bl} are both disjoint families in B0. We may assume
without loss of generality that none of the Ai’s are equal to ∅, and each Ai does appear on
some term in the first summation with ai1,··· ,in 6= 0. The assumption applies to the Bj’s.
Under this assumption, we claim that

∪ki=1 Ai = ∪lj=1Bj. (5.7)

Indeed, given 1 6 i 6 k, suppose that Ai appears within a term

ai1,··· ,i,··· ,in1Ai1×···×Ai×···×Ain , ai1,··· ,i,··· ,in 6= 0.

Note that the indicator sets appearing in the representation of f are disjoint. As a result, if
we pick an arbitrary

t = (t1, · · · , t, · · · , tn) ∈ Ai1 × · · · × Ai × · · · × Ain ,

then f(t) 6= 0. Using the second representation in (5.6), this implies that t ∈ Bj1 × · · ·×Bjn

for some (j1, · · · , jn). In particular, t ∈ Bj for some j, and thus Ai ⊆ ∪lj=1Bj. The other
direction is similar.

As a consequence of (5.7), we can now write

f =
k∑

i1,··· ,in=1

l∑
j1,··· ,jn=1

ai1,··· ,in1Ci1j1×···×Cinjn

=
k∑

i1,··· ,in=1

l∑
j1,··· ,jn=1

bj1,··· ,jn1Ci1j1×···×Cinjn , (5.8)
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where Cirjr , Air ∩ Bjr . In particular, whenever (i1, · · · , in) and (j1, · · · , jn) are such that
Ci1j1 , · · · , Cinjn are all non-empty, we must have

ai1,··· ,in = bj1,··· ,jn .

For those indices where one of Cirjr = ∅ we can simply drop this term in the expansion of
(5.8). As a result, we have

k∑
i1,··· ,in=1

ai1,··· ,inW (Ai1) · · ·W (Ain) =
k∑

i1,··· ,in=1

l∑
j1,··· ,jn=1

ai1,··· ,inW (Ci1j1) · · ·W (Cinjn)

=
k∑

i1,··· ,in=1

l∑
j1,··· ,jn=1

bj1,··· ,jnW (Ci1j1) · · ·W (Cinjn)

=
l∑

j1,··· ,jn=1

bj1,··· ,jnW (Bj1) · · ·W (Bjn),

which shows that In(f) is well defined. It is routine to check that En is a vector space, and
the linearity of In is also obvious.

5.1.2 Step two: In(f) = In(f̃)

Lemma 5.2. For any f ∈ En, we have In(f) = In(f̃) where f̃ is the symmetrisation of f .

Proof. It is enough to verity the assertion for

f = 1A1×···×An ,

where A1, · · · , An ∈ B0 are disjoint. In this case, we have

f̃ =
1

n!

∑
σ∈Sn

1Aσ(1)×···×Aσ(n)

which is also an element of En. By the definition of In, we have

In(f̃) =
1

n!

∑
σ∈Sn

W (Aσ(1)) · · ·W (Aσ(n)) = W (A1) · · ·W (An) = In(f).

5.1.3 Step three: the isometry property of In

This part relies on the off-diagonal assumption in the definition of En in a crucial way.

Lemma 5.3. For any f ∈ Ep and g ∈ Eq, we have

E[Ip(f)Iq(g)] =

{
p!〈f̃ , g̃〉, p = q,

0, otherwise.
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Proof. We may assume without loss of generality that f, g are associated with the same
disjoint family {A1, · · · , Am}.

Let us first consider p 6= q. By linearity, it suffices to look at the case when

f = 1Ai1×···×Aip , g = 1Aj1×···×Ajq .

In this case, we have

Ip(f) = W (Ai1) · · ·W (Aip), Iq(g) = W (Aj1) · · ·W (Ajq).

Since the indices in (i1, · · · , ip) are all distinct (the same for (j1, · · · , jq)) and p 6= q, we see
that

E[Ip(f)Iq(g)] = 0.

Now consider the case when p = q, and let

f =
m∑

i1,··· ,ip=1

ai1,··· ,ip1Ai1×···×Aip , g =
m∑

i1,··· ,ip=1

bi1,··· ,ip1Ai1×···×Aip .

By definition, we have

Ip(f) =
m∑

i1,··· ,ip=1

ai1,··· ,ipW (Ai1) · · ·W (Aip)

=
∑

16i1<···<ip6m

( ∑
σ∈Sp

aiσ(1),··· ,iσ(p)
)
W (Ai1) · · ·W (Aip)

=
∑

16i1<···<ip6m

ãi1,··· ,ipW (Ai1) · · ·W (Aip),

where
ãi1,··· ,ip ,

∑
σ∈Sp

aiσ(1),··· ,iσ(p) .

Similar equation holds for Ip(g). It follows that

E[Ip(f)Ip(g)]

= E
[( ∑

16i1<···<ip6m

ãi1,··· ,ipW (Ai1) · · ·W (Aip)
)( ∑

16j1<···<jp6m

b̃j1,··· ,jpW (Aj1) · · ·W (Ajp)
)]

=
∑

16i1<···<ip6m

ãi1,··· ,ip b̃i1,··· ,ipE[W (Ai1)
2] · · ·E[W (Aip)

2]

=
∑

16i1<···<ip6m

ãi1,··· ,ip b̃i1,··· ,ipµ(Ai1) · · ·µ(Aip).

On the other hand, we have

f̃ =
m∑

i1,··· ,ip=1

ai1,··· ,ip
( 1

p!

∑
σ∈Sp

1Aiσ(1)×···×Aiσ(p)

)
.
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Note the the expression inside the above bracket is independent of the ordering of i1, · · · , ip.
Therefore, we can further write

f̃ =
∑

16i1<···<ip6m

ãi1,··· ,ip
( 1

p!

∑
σ∈Sp

1Aiσ(1)×···×Aiσ(p)

)
.

Similar equation holds for g̃. It follows that

〈f̃ , g̃〉L2 =
∑

16i1<···<ip6m

ãi1,··· ,ip b̃i1,··· ,ip ·
1

(p!)2

∑
σ∈Sp

µ(Ai1) · · ·µ(Aip)

=
1

p!

∑
16i1<···<ip6m

ãi1,··· ,ip b̃i1,··· ,ipµ(Ai1) · · ·µ(Aip)

= E[Ip(f)Ip(g)].

This gives the desired isometry property.

Observe that, for any f ∈ En we have

‖f̃(t1, · · · , tn)‖L2 6
1

n!

∑
σ∈Sn

‖f(tσ(1), · · · , tσ(n))‖L2 = ‖f‖L2 .

As an immediate consequence of Lemma 5.3, we see that the linear operator In : En →
L2(Ω,F ,P) is continuous:

‖In(f)‖L2(Ω,F ,P) =
√
n! · ‖f̃‖L2(Tn,Bn,µn) 6

√
n! · ‖f‖L2(Tn,Bn,µn).

5.1.4 Step four: En is dense in L2(T n,Bn, µn)

In order to expect a unique extension of In to the space L2(T n,Bn, µn), the last missing piece
is the fact that En is dense in L2(T n,Bn, µn). The non-diagonal assumption in En creates
extra technical challenge to establish this fact. We develop the proof via the following route
of approximations:

En  1A1×···×An (each Ai ∈ B0) 1A (µn(A) <∞) f ∈ L2(T n,Bn, µn).

Recall that B0 is the collections of measurable sets in B with finite µ-measure.

Lemma 5.4. The subspace Span{1A : A ∈ B0} is dense in L2(T,B, µ).

Proof. Since µ is σ-finite, we can find a sequence Tn ∈ B0 (n > 1) such that Tn ↑ T. Let
f ∈ L2(T,B, µ). By monotone convergence, we have

f1{|f |6M}∩Tn → f in L2

as M,n→∞. As a result, given ε > 0, there exists M and n such that

‖fM1Tn − f‖L2 < ε,
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where fM , f1{|f |6M}. Next, since fM is uniformly bounded, from measure theory we can
find a simple function ϕ (i.e. linear combination of indicator functions) such that

‖fM − ϕ‖∞ <
ε

µ(Tn)1/2
.

Therefore, we have ∫
T

|ϕ− fM |21Tndµ 6 ε2 or ‖ϕ1Tn − fM1Tn‖L2 < ε.

The result then follows as
ϕ1Tn ∈ Span{1A : A ∈ B0}.

As a direct corollary, for each n > 1, the subspace

Span{1E : E ∈ Bn, µn(E) <∞}

is dense in L2(T n,Bn, µn). The next point of approximation is contained in the lemma below.

Lemma 5.5. Let E ∈ Bn be such that µn(E) <∞. Then 1E can be approximated in the L2-
sense by linear combinations of indicator functions of the form 1A1×···×An where A1, · · · , An ∈
B0.

Proof. Recall from the construction of product measures that

µn(E) = inf
{ ∞∑
m=1

µ(A1,m) · · ·µ(An,m) : E ⊆ ∪∞m=1A1,m × · · · × An,m
}
.

Since µn(E) <∞, given ε > 0, we find a covering ∪∞m=1A1,m × · · · × An,m of E such that

∣∣ ∞∑
m=1

µn(A1,m × · · · × An,m)− µn(E)
∣∣ < ε2.

In particular, ∪∞m=1A1,m × · · · × An,m has finite µn-measure and∥∥1∪∞m=1A1,m×···×An,m − 1E
∥∥
L2 < ε.

When N is large enough, we have∥∥1∪Nm=1A1,m×···×An,m − 1E
∥∥
L2 < ε. (5.9)

By intersecting with Tl (for large l) if necessary (where Tl ↑ T, µ(Tl) <∞), we may further
assume that

Ai,m ∈ B0 ∀i = 1, · · · , n, m > 1,

and (5.9) remains true. The result then follows by observing that

1∪Nm=1A1,m×···×An,m ∈ Span
{
1B1×···×Bn : B1, · · · , Bn ∈ B0

}
.
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As the final point of approximation, it remains to prove the following lemma . The
atomless asumption on µ plays a critical role here (the key property is Proposition A.1 in
the appendix).

Lemma 5.6. Let A1, · · · , An ∈ B0. Then 1A1×···×An can be approximated by elements in En
in the sense of L2.

Proof. We first identify a disjoint A family of subsets so that each Ai is the union of some
members in A. To this end, let

Ξ , {ω = (ω1, · · · , ωn) : ωi = ±1 ∀i and at least one of ωi = 1}.

For each ω ∈ Ξ, we define
Aω , Aω1

1 ∩ · · · ∩ Aωnn ,
where A−1

i , Aci . It is clear that A , {Aω : ω ∈ Ξ} is a disjoint family of subsets in B0, and

Ai = ∪ω∈Ξ,ωi=1A
ω (5.10)

for each 1 6 i 6 n.
Next, let ε > 0 be given. According to Proposition A.1, for each ω ∈ Ξ we can find a

partition of Aω in which every member has µ-measure less than ε. Since the Aω’s are disjoint
for different ω’s, this leads to an entire family {B1, · · · , Bm} of disjoint subsets such that
µ(Bi) < ε for all i and each Ai is the union of some members from this family. As a result,
we can formally express

1A1×···×An =
m∑

i1,··· ,in=1

ωi1,··· ,in1Bi1×···×Bin (ωi1,··· ,in = 0 or 1)

=
∑

(i1,··· ,in)∈I

ωi1,··· ,in1Bi1×···×Bin +
∑

(i1,··· ,in)∈J

ωi1,··· ,in1Bi1×···×Bin , (5.11)

where I consists of those n-tuples (i1, · · · , in) in which there are no repeated indices, and
J , Ic. Note that the first summation on the right hand side is an element in En.

Let us estimate the second summation in (5.11). Recall that J consists of those n-tuples
(i1, · · · , in) with repeated indices. The main observation is∑

(i1,··· ,in)∈J

µ(Bi1) · · ·µ(Bin) 6

(
n

2

)
·
( m∑
i=1

µ(Bi)
2
)
·
( m∑
i=1

µ(Bi)
)n−2

, (5.12)

for the obvious combinatorial reason that each term on the left and side appears at least
once in the full expansion of the right hand side, while the latter involves repeated counting.
The right hand side of (5.12) can further be bounded above by

ε ·
(
n

2

)
·
( m∑
i=1

µ(Bi)
)n−1

= ε ·
(
n

2

)
· µ
(
∪mi=1 Bi

)n−1
= ε ·

(
n

2

)
· µ
(
∪ni=1 Ai

)n−1
,

The last identity follows from the fact that

∪mi=1Bi = ∪ni=1Ai,
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which is clear from the construction of the Bi’s. As a result,∑
(i1,··· ,in)∈J

ωi1,··· ,inµ(Bi1) · · ·µ(Bin) 6 ε ·
(
n

2

)
· µ
(
∪ni=1 Ai

)n−1
.

Since n and the Ai’s are given fixed and ε is arbitrary, from (5.11) we conclude that 1A1×···×An
can be approximated by elements in En in the sense of L2.

To summarise all the previous steps, we have now shown that En is dense in L2(T n,Bn, µn)
and In : En → L2(Ω,F ,P) is a bounded linear operator. Therefore, it admits a unique
bounded linear extension to L2(T n,Bn, µn) satisfying the same isometry property (5.3). In
particular, if we define a new inner product on L2

S(T n,Bn, µn) by

〈·, ·〉L2
S(Tn,Bn,µn) , n!〈·, ·〉L2(Tn,Bn,µn), (5.13)

then the restriction of In on to L2
S(T n,Bn, µn) is an isometric embedding into L2(Ω,F ,P).

Example 5.1. Consider the Wiener space over [0, 1] in which we have H = L2([0, 1], dt).
Given a function f ∈ L2([0, 1]n, (dt)n), we define the iterated Itô integral of f by

Jn(f) ,
∫

0<t1<···<tn<1

f(t1, · · · , tn)dWt1 · · · dWtn

,
∫ 1

0

( ∫ tn

0

· · ·
( ∫ t3

0

( ∫ t2

0

f(t1, · · · , tn)dWt1

)
dWt2

)
· · · dWtn−1

)
dWtn , (5.14)

where the each of above integrals is understood in the sense of Itô. We claim that for any
symmetric f ∈ L2

S([0, 1]n, (dt)n),
In(f) = n!Jn(f). (5.15)

To sketch the proof of this fact, we first consider the case when f is the symmetrisation of

1[s′1,s
′′
1 ]×···×[s′n,s

′′
n]

where s′′i 6 s′i+1 for each i. In this case,

In(f) = W ([s′1, s
′′
1]) · · ·W ([s′n, s

′′
n]) =

(
Ws′′n −Ws′n

)
· · ·
(
Ws′′1
−Ws′1

)
.

On the other hand, since

f =
1

n!

∑
σ∈Sn

1[s′
σ(1)

,s′′
σ(1)

]×···×[s′
σ(n)

,s′′
σ(n)

],

Due to the special ordering in (5.14), after applying Jn the only surviving term is the one
corresponding to σ = id. As a result, we have

Jn(f) =
1

n!
Jn(1[s′1,s

′′
1 ]×···×[s′n,s

′′
n]) =

1

n!

(
Ws′′n −Ws′n

)
· · ·
(
Ws′′1
−Ws′1

)
=

1

n!
In(f).

For the general case, one needs to show (in a similar spirit to Section 5.1.4) that the linear
subspace generated by those f ’s of the above form is dense in L2

S([0, 1]n, (dt)n), and the
iterated Itô integral Jn also possesses a similar isometry property. This allows us to pass to
the limit to obtain (5.15). We let the reader to think about the technical details.
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5.2 The connection between multiple wiener integrals and Wiener
chaoses

Finally, we establish the important result that In defines an isometric isomorphism between
L2
S(T n,Bn, µn) (equipped with the inner product (5.13)) and the n-th Wiener chaos Hn. The

core of its proof relies on a product formula for multiple Wiener integrals which we discuss
in what follows. This product formula is also of independent interest.

5.2.1 The product structure for multiple Wiener integrals

We show that the product Ip(f) · Iq(g) of two multiple Wiener integrals can be expressed as
a linear combination of multiple Wiener integrals of degrees up to p+ q.

To this end, we first introduce a few notation. We again work in the setting of Section
5.1. In particular, H = L2(T,B, µ) where µ is a σ-finite atomless measure. For simplicity,
we denote L2(T n,Bn, µn) (respectively, L2

S(T n,Bn, µn)) by L2(T n) (respectively, L2
S(T n)).

Definition 5.2. Let f ∈ L2(T p) and g ∈ L2(T q). The tensor product of f and g is a function
of p+ q variables defined by

f ⊗ g(t1, · · · , tp, tp+1, · · · , tp+q) , f(t1, · · · , tp) · g(tp+1, · · · , tp+q).

For 1 6 r 6 p ∧ q , min{p, q}, the r-th contraction of f and g is a function of p + q − 2r
variables defined by

f ⊗r g(t1, · · · , tp−r, tp+1, · · · , tp+q−r)

,
∫
T r
f(t1, · · · , tp−r, s)g(tp+1, · · · , tp+q−r, s)µr(ds).

For convenience we also set f ⊗0 g , f ⊗g. We use f⊗̃g and f⊗̃rg to denote their symmetri-
sations respectively.

We leave it as an exercise to show that

‖f ⊗ g‖L2(T p+q) = ‖f‖L2(T p) · ‖g‖L2(T q)

and
‖f ⊗r g‖L2(T p+q−2r) 6 ‖f‖L2(T p) · ‖g‖L2(T q).

In particular, both of f ⊗ g and f ⊗r g are square integrable.
The following result is an important step towards the general product formula.

Proposition 5.1. Let f ∈ L2
S(T p) and g ∈ L2(T ). Then

Ip(f) · I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g). (5.16)

Proof. By linearity, we may assume that f = 1̃C1×···×Cp and g = 1D where C1, · · · , Cp ∈ B0

are disjoint and D ∈ B0. By writing

Ci = (D ∩ Ci) ∪ (Dc ∩ Ci),
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D = ∪pi=1(D ∩ Ci) ∪
(
D ∩ (C1 ∪ · · · ∪ Cp)c

)
,

and using linearity again, we may further assume without loss of generality that

f = 1̃A1×···×Ap , g = 1A0 or 1A1 ,

where A0, A1, · · · , Ap ∈ B0 are disjoint.

Case 1 : g = 1A0 .

We have
Ip(f) · I1(g) = W (A0)W (A1) · · ·W (Ap).

On the other hand, we also have

Ip+1(f ⊗ g) = Ip+1

(
f⊗̃g

)
= Ip+1

(
1̃A0×A1×···×Ap

)
= W (A0)W (A1) · · ·W (Ap),

and
f ⊗1 g(t1, · · · , tp−1) =

∫
T

f(t1, · · · , tp−1, s)g(s)µ(ds) = 0,

since A0 is disjoint from {A1, · · · , Ap}. The equation (5.16) thus follows.

Case 2 : g = 1A1 .

Given ε > 0, let B1, · · · , Bm be a partition of A1 such that µ(Bi) < ε for each i (cf.
Proposition A.1). Then we can write

Ip(f)I1(g) = W (A1)2W (A2) · · ·W (Ap) =
( m∑
i=1

W (Bi)
)2
W (A2) · · ·W (Ap)

=
∑
i 6=j

W (Bi)W (Bj)W (A2) · · ·W (Ap) +
m∑
i=1

(
W (Bi)

2 − µ(Bi)
)
W (A2) · · ·W (Ap)

+ µ(A1)W (A2) · · ·W (Ap).

We now analyse the three terms on the right hand side separately.
The first term is a multiple Wiener integral given by Ip+1(hε) where

hε ,
∑
i 6=j

1Bi×Bj×A2×···×Ap .

We claim that h̃ε → f⊗̃g in L2(T p+1) as ε→ 0. Indeed, this follows from∥∥h̃ε − f⊗̃g∥∥2

L2(T p+1)

=
∥∥h̃ε − 1̃A1×A1×A2×···×Ap

∥∥2

L2(T p+1)
6
∥∥hε − 1A1×A1×A2×···×Ap

∥∥2

L2(T p+1)

=
m∑
i=1

µ(Bi)
2µ(A2) · · ·µ(Ap) 6 εµ(A1) · · ·µ(Ap).

By the continuity of Ip+1, we have

Ip+1(hε) = Ip+1(h̃ε)→ Ip+1(f⊗̃g) = Ip+1(f ⊗ g) in L2(Ω,F ,P)
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as ε→ 0.
We claim that the second term

Rε ,
m∑
i=1

(
W (Bi)

2 − µ(Bi)
)
W (A2) · · ·W (Ap)

converges to 0 in L2 as ε→ 0. This follows from

E[R2
ε] =

( m∑
i=1

E
[(
W (Bi)

2 − µ(Bi)
)2])

µ(A2) · · ·µ(Ap)

= 2
( m∑
i=1

µ(Bi)
2
)
µ(A2) · · ·µ(Ap) 6 2εµ(A1) · · ·µ(Ap).

Finally, we claim that the last term µ(A1)W (A2) · · ·W (Ap) equals pIp−1(f ⊗1 g). To this
end, we introduce the following notation for convenience. We put a line on a set of variables
in a function to denote the corresponding permuted sum. For instance

f(t1, t2, · · · , tp, tp+1, · · · , tq) ,
∑
σ∈Sp

f(tσ1 , · · · , tσp , tp+1, · · · , tq). (5.17)

Using this notation, we have

f ⊗1 g(t1, · · · , tp−1) =

∫
T

1̃A1×···×Ap(t1, · · · , tp−1, s)1A1(s)µ(ds)

=
1

p!

∫
T

1A1×···×Ap(t1, · · · , tp−1, s)1A1(s)µ(ds)

=
1

p!

∫
T

1A1×···×Ap(s, t1, · · · , tp−1)1A1(s)µ(ds)

=
µ(A1)

p
· 1

(p− 1)!
1A2×···×Ap(t1, · · · , tp−1)

=
µ(A1)

p
1̃A2×···×Ap(t1, · · · , tp−1).

It follows that
Ip−1(f ⊗1 g) =

µ(A1)

p
·W (A2) · · ·W (Ap)

which gives the desired claim.
Putting the three terms together, we have

Ip(f)I1(g) = Ip+1(hε) +Rε + Ip−1(f ⊗1 g),

and the equation (5.16) follows by letting ε→ 0.

The extension of Proposition 5.1 to the general case relies on the following rather technical
lemma. Its proof is not inspiring and the reader is encouraged to take the lemma as granted.
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Lemma 5.7. Given p > q > r, let f ∈ L2
S(T p) and g , g1⊗̃g2, where g1 , 1̃A1×···×Aq−1 ,

g2 , 1Aq and the sets A1, · · · , Aq ∈ B0 are disjoint. Then we have

f⊗̃rg =
r(p+ q − 2r + 1)

q(p− r + 1)

(
f⊗̃r−1g1

)
⊗1 g2 +

q − r
q

(
f⊗̃rg1

)
⊗̃g2. (5.18)

Proof. Recall that

f ⊗r g(t1, · · · , tp−r, tp+1, · · · , tp+q−r)

,
∫
T r
f(t1, · · · , tp−r, s)g(tp+1, · · · , tp+q−r, s)µr(ds).

We express

g(tp+1, · · · , tp+q−r, s) = 1̃A1×···×Aq(tp+1, · · · , tp+q−r, s)

=
1

q!

∑
σ∈Sq

1A1×···×Aq(σ(tp+1, · · · , tp+q−r, s))

=
1

q!

(∑
σ∈S′q

+
∑
σ∈S′′q

)
1A1×···×Aq(σ(tp+1, · · · , tp+q−r, s)), (5.19)

where σ(· · · ) means permuting the variables inside the bracket by σ. In the above summation,
S ′q consists of those permutations σ under which the last position of

σ(tp+1, · · · , tp+q−r, s) (5.20)

is not an s-variable, and S ′′q consists of those permutations under which the last position of
(5.20) is an s-variable. Using the decomposition (5.19), we can formally write f ⊗r g into
two parts:

f ⊗r g = I + J.

Let us first look at I. We use the notation introduced in (5.17) and also use (· · · , t̂, · · · )
to denote the tuple obtained by removing the variable t. From the definition of I we have

I =
1

q!

∑
σ∈S′q

∫
T r
f(t1, · · · , tp−r, s)1A1×···×Aq(σ(tp+1, · · · , tp+q−r, s))µr(ds)

=
1

q!

q−r∑
j=1

∫
T r
f(t1, · · · , tp−r, s)1A1×···×Aq−1(tp+1, · · · , t̂p+j, · · · tp+q−r, s)g2(tp+j)µ

r(ds)

=
1

q

q−r∑
j=1

( ∫
T r
f(t1, · · · , tp−r, s)1̃A1×···×Aq−1(tp+1, · · · , t̂p+j, · · · tp+q−r, s)µr(ds)

)
g2(tp+j)

=
1

q

q−r∑
j=1

f ⊗r g1(t1, · · · , tp−r, tp+1, · · · , t̂p+j, · · · , tp+q−r) · g2(tp+j).

After symmetrisation, we obtain

Ĩ =
q − r
q

(f⊗̃rg1)⊗̃g2(t1, · · · , tp−r, tp+1, · · · tp+q−r). (5.21)
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Next, we look at the term J . By definition,

J =
1

q!

∑
σ∈S′′q

∫
T r
f(t1, · · · , tp−r, s)1A1×···×Aq(σ(tp+1, · · · , tp+q−r, s))µr(ds)

=
1

q!

r∑
j=1

∫
T r
f(t1, · · · , tp−r, s)1A1×···×Aq−1(tp+1, · · · , tp+q−r, s\{sj})g2(sj)µ

r(ds)

=
1

q

r∑
j=1

∫
T

( ∫
T r−1

f(t1, · · · , tp−r, sj, s\{sj})

· g1(tp+1, · · · , tp+q−r, s\{sj})µr−1(d(s\{sj}))
)
g2(sj)µ(dsj) (by the symmetry of f)

=
r

q

∫
T

f ⊗r−1 g1(s, t1, · · · , tp−r, tp+1, · · · , tp+q−r)g2(s)µ(ds).

To compare this with (f⊗̃r−1g1)⊗1 g2, we compute:

(f⊗̃r−1g1)⊗1 g2(t1, · · · , tp−r, tp+1, · · · , tp+q−r)

=
1

(p+ q − 2r + 1)!

∫
T

f ⊗r−1 g1(t1, · · · , tp−r, s, tp+1, · · · , tp+q−r)g2(s)µ(ds).

The crucial observation is that, if the s-variable is shuffled to any of the last q − r positions
the integrand is zero, due to the definitions of g1 and g2. In addition, the location of s at any
of the first p− r+ 1 positions results in the same value for the integral, due to the symmetry
of f . As a result, we have

(f⊗̃r−1g1)⊗1 g2(t1, · · · , tp−r, tp+1, · · · , tp+q−r)

=
p− r + 1

(p+ q − 2r + 1)!

∫
T

f ⊗r−1 g1(s, t1, · · · , tp−r, tp+1, · · · , tp+q−r)g2(s)µ(ds)

=
p− r + 1

(p+ q − 2r + 1)
· q
r
· J̃ . (5.22)

The desired equation (5.18) follows from (5.21) and (5.22).

We are now able to establish the general product formula for multiple Wiener integrals.

Theorem 5.2. Let f ∈ L2
S(T p) and g ∈ L2

S(T q). Then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g).

Proof. We use induction on q and always assume that p > q. The case when q = 1 is contained
in Proposition 5.1. Suppose that the claim is true for q − 1 and now let g ∈ L2

S(T q). By
linearity, we may assume that

g = g1⊗̃g2, g1 , 1̃A1×···×Aq−1 , g2 , 1̃Aq ,
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where A1, · · · , Aq ∈ B0 are disjoint. In particular, g1 ⊗1 g2 = 0 and by Proposition 5.1 we
have

Iq(g) = Iq−1(g1) · I1(g2) + (p− 1)Ip−2(g1 ⊗1 g2) = Iq−1(g1) · I1(g2).

It follows that

Ip(f)Iq(g) = Ip(f)Iq−1(g1)I1(g2)

=

q−1∑
r=0

r!

(
p

r

)(
q − 1

r

)
Ip+q−1−2r(f⊗̃rg1)I1(g2) (induction hypothesis)

=

q−1∑
r=0

r!

(
p

r

)(
q − 1

r

)(
Ip+q−2r((f⊗̃rg1)⊗̃g2)

+ (p+ q − 1− 2r)Ip+q−2−2r((f⊗̃rg1)⊗1 g2) (Proposition 5.1)

=

q−1∑
r=0

r!

(
p

r

)(
q − 1

r

)
Ip+q−2r((f⊗̃rg1)⊗̃g2)

+

q∑
r=1

(r − 1)!

(
p

r − 1

)(
q − 1

r − 1

)
(p+ q − 2r + 1)Ip+q−2r((f⊗̃r−1g1)⊗1 g2)

=

q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). ( Lemma 5.7)

This concludes the induction step.

5.2.2 The isometry between L2
S(T n,Bn, µn) and Hn

Using the product formula for multiple Wiener integrals (in fact we only need Proposition
5.1), we can now establish the following isometry property. Recall that the space L2

S(T n) is
equipped with the inner product (5.13).

Theorem 5.3. For each n > 1, the multiple Wiener integral operator In is an isometric
isomorphism between L2

S(T n,Bn, µn) and Hn.

Proof. The key observation is that

n!Hn(W (h)) =

∫
Tn
h(t1) · · ·h(tn)dWt1 · · · dWtn (5.23)

for any h ∈ H = L2(T ) with ‖h‖H = 1. The case when n = 1 is obvious. For the inductive
step, suppose that (5.23) is true up to degree n. We write

h⊗n(t1, · · · , tn) = h(t1) · · ·h(tn).

According to the recursive relation (2.9) for Hermite polynomials and Proposition 5.1, we
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have

(n+ 1)Hn+1(W (h)) = W (h)Hn(W (h))−Hn−1(W (h))

=
1

n!
I1(h)In(h⊗n)− 1

(n− 1)!
In−1(h⊗(n−1))

=
1

n!

(
In+1(h⊗(n+1)) + nIn−1(h⊗n ⊗1 h)

)
− 1

(n− 1)!
In−1(h⊗(n−1)).

Note that h⊗n ⊗1 h = h⊗(n−1) since ‖h‖H = 1. Therefore, we arrive at

(n+ 1)Hn+1(W (h)) =
1

n!
In+1(h⊗(n+1)),

which completes the inductive step.
By using a density argument (based on the definition of Hn and the isometry property

(5.5) of In), the relation (5.23) already implies that every element in Hn is the multiple
Wiener integral of some function f ∈ L2

S(T n). It remains show that the image of In is
contained in Hn. Due to Theorem 4.1, it is enough to see that In(f) ⊥ Hm whenever
f ∈ L2

S(T n) and m 6= n. But this follows from the fact that

In(f) ⊥ 1

m!
Im(h⊗m) = Hm(W (h)), ∀h ∈ H with ‖h‖H = 1 and ∀m 6= n.

Example 5.2. In the Brownian motion case, we have T = [0, 1] and µ = dt. By taking
h = 1 ∈ L2([0, 1], dt) in the formula (5.23), we find

n!Hn(W1) =

∫
[0,1]n

dWt1 · · · dWtn

= n!

∫ 1

0

( ∫ tn

0

· · ·
( ∫ t2

0

dWt1

)
· · · dWtn−1

)
dWtn .

Appendix A Atomless measures
We collect a few basic facts about atomless measures that are used when proving the dense-
ness of En as well as the product formula (5.16).

Let (T,B, µ) be an atomless measure space (cf. Definition 5.1). Note that for each B ∈ B,
the restriction of µ on B∩B is also atomless. For this reason and the fact that we always work
with sets of finite µ-measure, we may restrict ourselves to finite atomless measure spaces.
An essential property of the atomless property is that µ takes values continuously. This is
the content of the following result.

Theorem A.1. Suppose that c , µ(T ) < ∞. Then for any t ∈ [0, c], there exists A ∈ B
such that µ(A) = t.
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Proof. The main idea is to use Zorn’s lemma. Define

Γ ,
{
S : D → B |D ⊆ [0, c], S increasing, µ(S(t)) = t ∀t ∈ D

}
.

Here “S increasing” means

t1 < t2 in D =⇒ S(t1) ⊆ S(t2).

We define a partial order on Γ by

S � S ′ ⇐⇒ D ⊆ D′, S ′|D = S.

It can be checked that every chain in Λ has an upper bound. According to Zorn’s lemma, Γ
has a maximal element which is denoted as Sm : Dm → B.

We now show that Dm = [0, c]. To see this, first note that c ∈ Dm, for otherwise we may
add the point c into Dm and assign Sm(c) , T , contradicting the maximality of Sm. Suppose
on the contrary that s /∈ Dm for some s < c. Let

u∗ , sup{u : u ∈ Dm, u < s}, v∗ , inf{v : v ∈ Dm, v > s}.

We claim that u∗ = v∗. Indeed, pick two sequences uk, vk ∈ Dm such that uk ↑ u∗ and vk ↓ v∗.
Set

Ak , Sm(uk), Bk , Sm(vk), A , ∪kAk, B , ∩kBk.

It follows that
µ(A) = lim

k→∞
µ(Ak) = lim

k→∞
uk = u∗

and similarly µ(B) = v∗. If u∗ < v∗, then µ(B\A) = v∗ − u∗ > 0. By the definition of
the atomless property, there exists C ∈ B such that A ⊆ C ⊆ B and u∗ < µ(C) < v∗.
We set s∗ , µ(C), add the point s∗ into Dm, and assign Sm(s∗) , C. This contradicts the
maximality of Sm. As a result, we have u∗ = v∗ = s. Now by adding s into Dm and assigning
Sm(s) , ∪kAk, we have µ(Sm(s)) = s and again a contradiction with the maximality of Sm.
Consequently, Dm = [0, c] and the assertion of the theorem follows from this.

As an important consequence of Theorem A.1, we have the following property which is
used in the main text.

Proposition A.1. Let (T,B, µ) be a finite atomless measure space. Then for any ε > 0,
there exists a partition T = ∪mi=1Bi, such that µ(Bi) < ε for each i.

Proof. Fix a number 0 < c < ε. We first find B1 ∈ B such that µ(B1) = c. The existence
of B1 is guaranteed by Theorem A.1. Then we consider µ|T\B1 and find B2 ∈ B such that
µ(B2) = c. We continue this procedure inductively, which stops after finitely many steps
(say n) since µ(T ) <∞ and c > 0. The family

B1, · · · , Bn, (B1 ∪ · · · ∪Bn)c

gives the desired partition.
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